skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Chengcui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The k-core of a graph is the largest induced sub-graph with minimum degree k. The problem of k-core decomposition finds the k-cores of a graph for all valid values of k, and it has many applications such as network analysis, computational biology and graph visualization. Currently, there are two types of parallel algorithms for k-core decomposition: (1) degree-based vertex peeling, and (2) iterative h-index refinement. There is, however, few studies on accelerating k-core decomposition using GPU. In this paper, we propose a highly optimized peeling algorithm on a GPU, and compare it with possible implementations on top of think-like-a-vertex graph-parallel GPU systems as well as existing serial and parallel k-core decomposition algorithms on CPUs. Extensive experiments show that our GPU algorithm is the overall winner in both time and space. Our source code is released at https://github.com/akhlaqueak/KCoreGPU. 
    more » « less